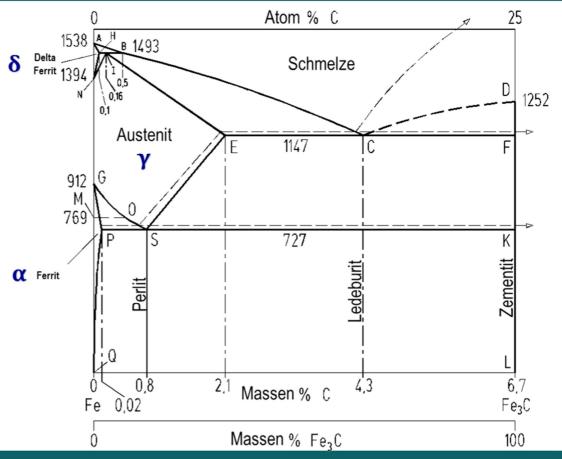


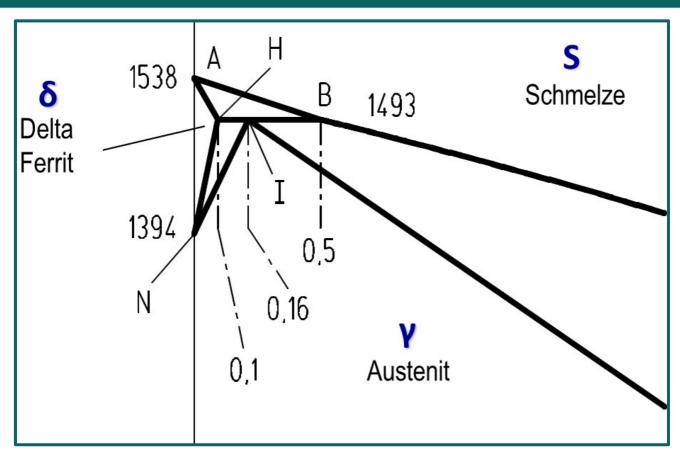
Fe-Fe₃C / Fe-Graphit Zustandsdiagramm Zwillingsdiagramm

Ziele



- ➤ Aufbau des Fe-C Zustandsdiagrammes
 - ➤ Stabiles (Graphit) System
 - ➤ Metastabiles (Karbid) System
 - ▶Phasen im System
 - ▶ Gefügebestandteile
- Umwandlungen während der Abkühlung
- ➤ Lösung von Musterbeispielen gemeinsam und selbständig

Fe-C Zwillingsdiagramm



Folie: 3

Peritektische Ecke

Im Weiteren

- ➤ Die Kohlenstoffgehalte werden im Massenprozent angegeben.
- ➤ Wir sehen von dem Aufzeichnen der peritektische Ecke nicht ab.
- ➤ Das ganze Diagramm muss vom Kopf aufgezeichnet werden können mit der charakteristischen Temperatur- und Konzentrationswerten.

Folie: 5

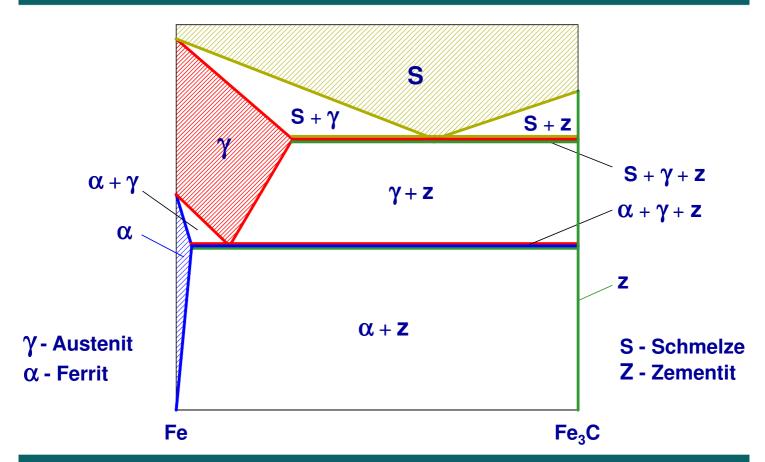
Benennungen

- Untereutektoidische Legierung 0,0 < C < 0,8 %
 Übereutektoidische Legierung 0,8 < C < 2,1 %
- ➤ Untereutektische Legierung 2,1 < C < 4,3 % Übereutektische Legierung 4,3 < C < 6,7 %
- Legierungen mit weniger als 2,1 % Kohlenstoffgehalt werden als Stähle mit höherem kohlenstoffgehalt als Gusseisen bezeichnet.

Zeichnen Sie das Fe-Fe₃C Zustandsdiagramm mit der charakteristischen Temperatur- und Konzentrationswerten auf.

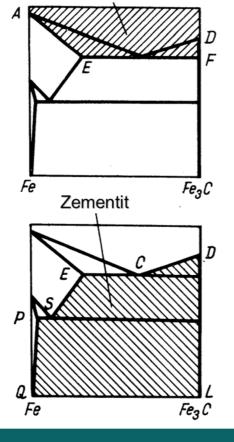
(Antwort: siehe Folie Nr.3.)

Folie: 7

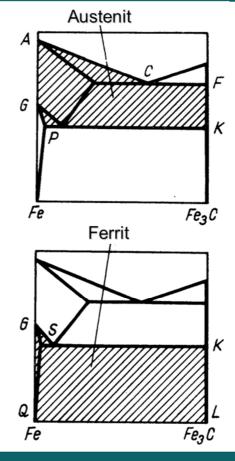

Tatt Phasen im metastabiles System 1.

- Flüssigkeit / Schmelze (flüssige Lösung)
 - Kohlenstoff löst sich unbegrenzt in der Schmelze.
- Delta Ferrit (Mischkristall) δ
 - ➤ Gittertyp: krz, Löslichkeit begrenzt (auf 1493°C max. 0,1 %)
- Austenit (Mischkristall) γ
 - ➤ Gittertyp: kfz, Löslichkeit begrenzt (auf 1147°C max. 2,1 %)
- Ferrit (Mischkristall) α
 - ➤ Gittertyp: krz, Löslichkeit begrenzt (auf 727°C max. 0,02 %)
- Zementit (intermetallische Verbindung) Fe3C
 - Stöchiometrisches VVerhältnis der Atome im Gitter ist 3 zu 1 (6,7 % C).

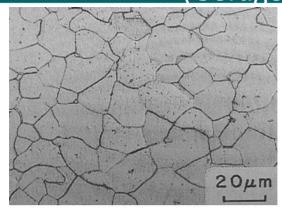
att Phasen im metastabiles System 2. μύες ΥΕΤΕΝ 1782

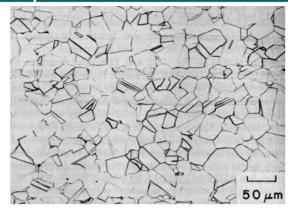


Folie: 9

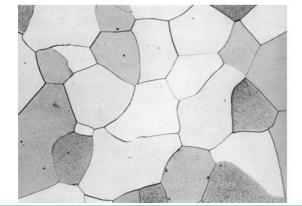


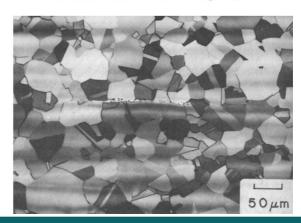
1. Aufgabe


Schmelze



Mikroskopaufnahmen (Gefügebilder) 1.



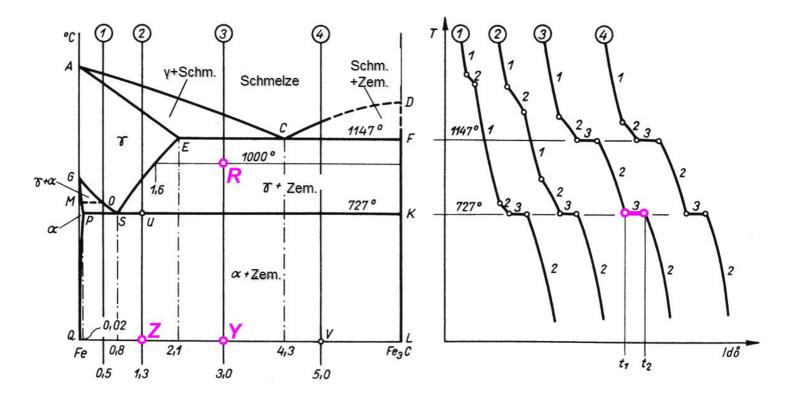


Ferrit - C = kb. 0 %

Austenit - C < 0,1 %

Folie: 11

2. Aufgabe

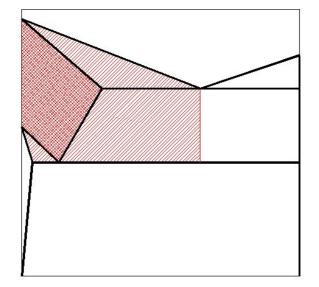

Skizzieren Sie das Fe-Fe₃C Zustandsdiagramm mit der Umwandlungslinien. Schreiben Sie die Phasen in dem einzelnen Bereichen!

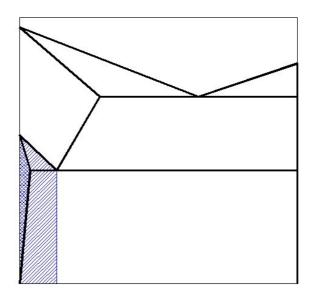
(Antwort: siehe Folie Nr.9.)

Typische Abkühlungskurven

Folie: 13

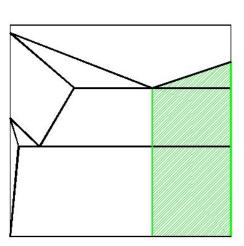
Gefügebestandteile im metastabilen System

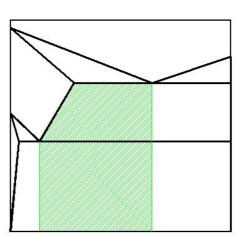

- Homogene Gefügebestandteile
 - Delta Ferrit δ (Mischkristall)
 - Austenit γ (Mischkristall)
 - \triangleright Ferrit α (Mischkristall)
 - primär (I.) Zementit Fe3C (wird aus Flüssigkeit ausgeschieden)
 - sekundär (II.) Zementit Fe3C (wird aus Austenit ausgeschieden)
 - > tertiär (III.) Zementit Fe3C (wird aus Ferrit ausgeschieden)
- Heterogene Gefügebestandteile
 - Ledeburit (Eutektikum) bildet sich aus gesättigte Flüssigkeit
 - > Perlit (Eutektoid) bildet sich aus gesättigte Austenit

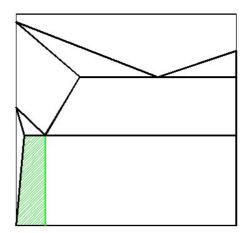

Bereiche der homogene Gefügebestandteile 1.

Austenit

Ferrit

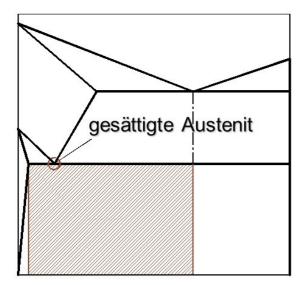

Folie: 15

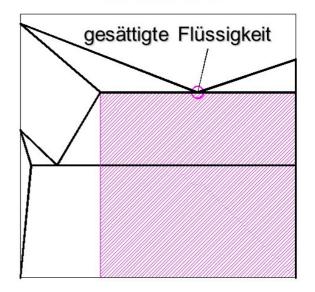

Bereiche der homogene Gefügebestandteile 1.

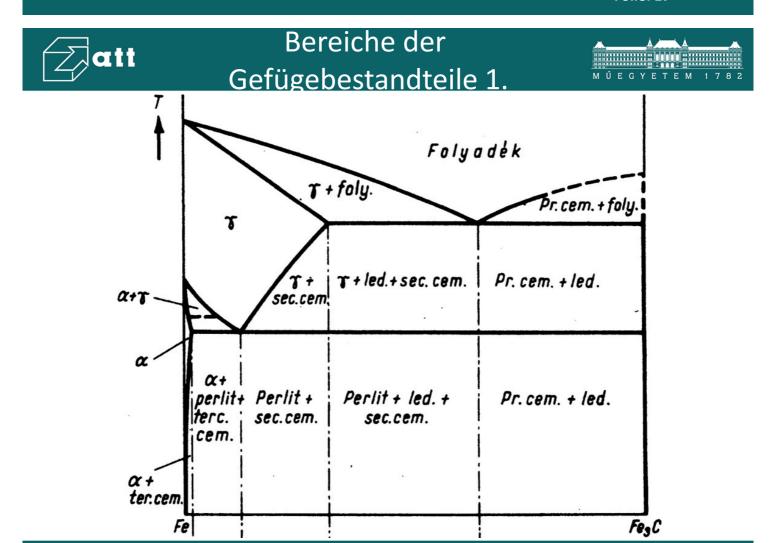

primär Zementit

sekundär Zementit

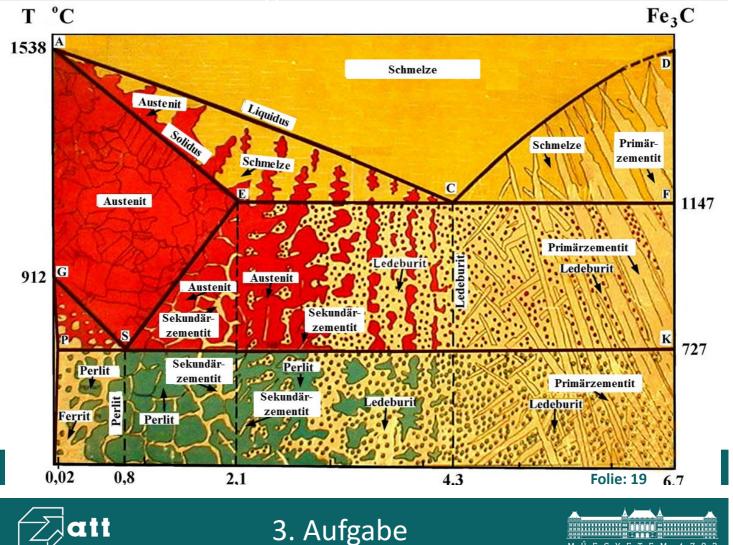
tertiär Zementit



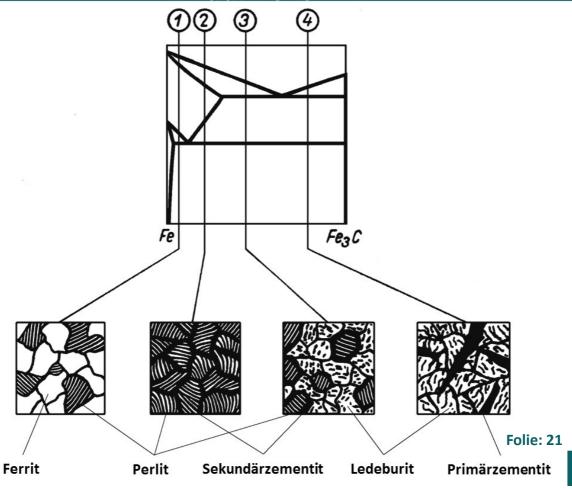

Bereiche der heterogene Gefügebestandteile


Perlit

Ledeburit

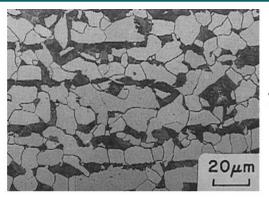

Folie: 17

Bereiche der Gefügebestandteile 2.

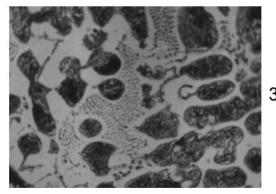

Skizzieren Sie das Fe-Fe₃C Zustandsdiagramm mit der Umwandlungslinien. Schreiben Sie die Gefügebestandteile in dem einzelnen Bereichen!

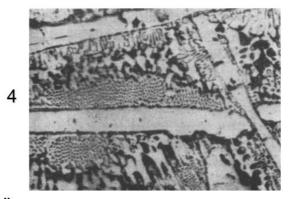
(Antwort: siehe Folie Nr.18.)

Schematische Gefügebilder auf 20ºC



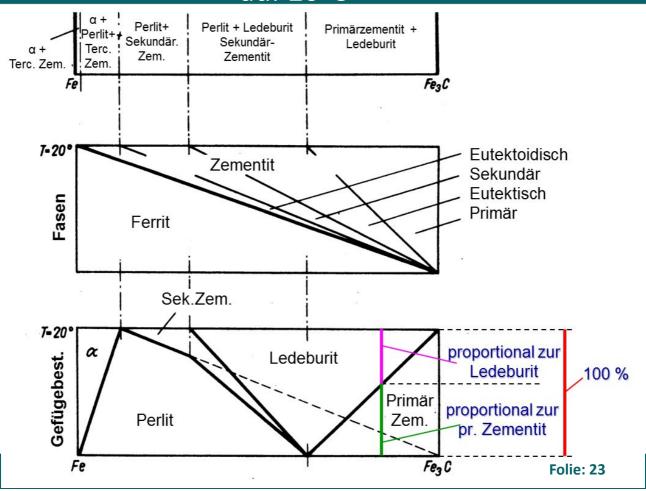
Mikroskopaufnahmen 2.




Untereutektoidische Legierung C = 0.2 %

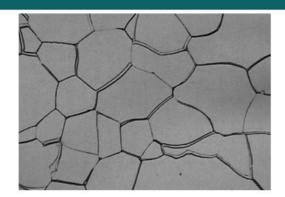
Übereutektoidische Legierung C = 1,4 %

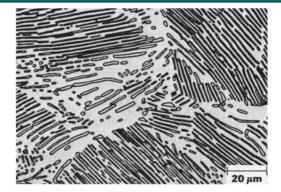
Untereutektische Legierung C = 2,9 %


Übereutektische Legierung C = 5,1 %

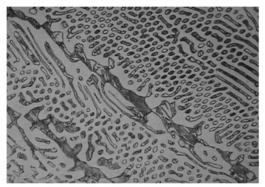
Folie: 22

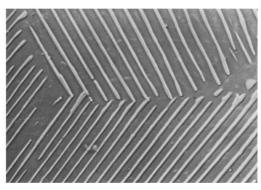
Phasen- und Gefügediagramm auf 20ºC



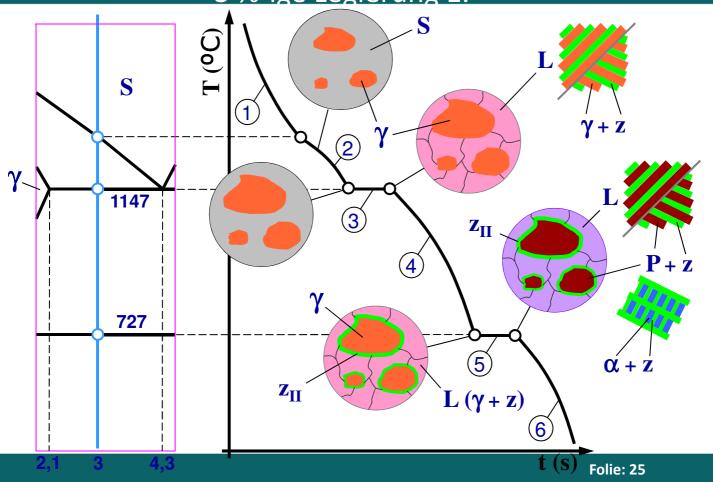


Mikroskopaufnahmen 3.




Ferrit + tert. Zementit C = 0,02 %

Perlit (Eutektoid) C = 0,8 %


Ledeburit (Eutektikum) C = 4,3 %

Perlit (Eutektoid) N = 5000 x

$\left Z_{i} \right $	all

Abkühlung der 3 %-ige Legierung 2.

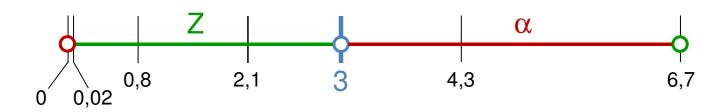
				Nr.	P.	F.	Phasen	Gefügebestandteile
		S		1	1	2	S	(S)
X			,	2	2	1	S + γ	(S) + γ
		1147		3	3	0	S + γ + Z	(S) + γ + L
				4	2	1	γ + Z	γ + L + Z _{II}
	<u> </u>	727	<<	5	3	0	$\gamma + Z + \alpha$	γ + L + Z _{II} + P
	2,1			6	2	1	Z + α	L + Z _{II} + P

Bestimmen wir die prozentuelle Mengenanteil der Phasen bei Raumtemperatur für die Legierung mit 3 % Kohlenstoffgehalt.

(siehe Folie Nr.13. Y- Punkt).

Folie: 27

4. Aufgabe (gemeinsam)



Phasen im Gleichgewicht auf 20 °C (8. Folie):

Ferrit (
$$\alpha$$
)

Zementit (z)
$$C = 6.7 \%$$

$$C = 6.7 \%$$

$$\alpha = (6,7-3) / (6,7-0) = 0,552 \longrightarrow 55,2\%$$

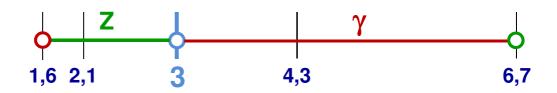
$$Z = (3-0) / (6,7-0) = 0,448 \longrightarrow 44,8 \%$$

Bestimmen Sie die prozentuelle Mengenanteil der Phasen bei 1000°C für die Legierung mit 3 % Kohlenstoffgehalt! (siehe Folie Nr.13. R- Punkt).

Austenit hat auf dieser Temperatur 1,6 % Kohlenstoffgehalt.

Folie: 29

5. Aufgabe



Phasen im Gleichgewicht auf 1000 °C (8. Folie):

$$C = 1.6 \%$$

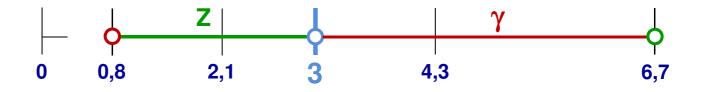
$$C = 6.7 \%$$

$$\gamma = (6.7 - 3) / (6.7 - 1.6) = 0.725 \longrightarrow 72.5\%$$

$$Z = (3-1.6) / (6.7-1.6) = 0.275 \longrightarrow 27.5 \%$$

Bestimmen Sie die prozentuelle Mengenanteil der <u>Phasen</u> auf $727^{\circ}C + \Delta T$ (wo $\Delta T \rightarrow 0$) für die Legierung mit 3 % Kohlenstoffgehalt!

Folie: 31



6. Aufgabe

Phasen im Gleichgewicht auf 727+∆T °C (8. Folie):

Austenit (
$$\gamma$$
) $C = 0.8 \%$
Zementit (Z) $C = 6.7 \%$

$$\gamma = (6.7 - 3) / (6.7 - 0.8) = 0.627 \longrightarrow 62.7 \%$$

$$Z = (3-0.8) / (6.7-0.8) = 0.373 \longrightarrow 37.3 \%$$

7. Aufgabe (gemeinsam)

Bestimmen wir die prozentuelle Mengenanteil der Gefügebestandteile bei Raumtemperatur für die Legierung mit 1,3 % Kohlenstoffgehalt!

(siehe Folie Nr.13. Z- Punkt).

Folie: 33

7. Aufgabe (gemeinsam)

Gefügebestandteile auf 20 °C (17. und 20. Folie):

Perlit (P)
$$C = 0.8 \%$$
 sek. Zem. (Z_{II}) $C = 6.7 \%$

$$P = (6,7-1,3) / (6,7-0,8) = 0.915 \longrightarrow 91,5\%$$

$$Z_{II} = (1.3 - 0.8) / (6.7 - 0.8) = 0.085 \longrightarrow 8.5\%$$

Bestimmen Sie die prozentuelle Mengenanteil der Gefügebestandteile bei Raumtemperatur für die Legierung mit 3 % Kohlenstoffgehalt!

Folie: 35

Abkühlung der 3 %-ige Legierung 2.

_				Nr.	P.	F.	Phasen	Gefügebestandteile
		f		1	1	2	S	(S)
γ				2	2	1	S + γ	$(S) + \gamma$
) —	1147		3	3	0	$S + \gamma + Z$	$(S) + \gamma + L$
				4	2	1	γ + Z	γ + L + Z _{II}
	<u> </u>	727	<((5	3	0	$\gamma + Z + \alpha$	$\gamma + L + Z_{ } + P$
				6	2	1	Z + α	L + Z _{II} + P

8. Aufgabe

Gefügebestandteile auf 20 °C-on (siehe Folie Nr. 17. 20. und Tabelle):

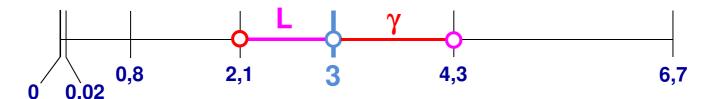
Perlit (P)

C = 0.8 % (von Austenit)

sek. Zem. (Z_{II}) C = 6.7 % (von Austenit)

Ledeburit (L) C = 4.3 %

1. Schritt: Berechnung der Gefügebestandteile auf 1147 - ΔT °C


$$C = 2,1 \%$$

Teilergebnis

Ledeburit (L) C = 4.3 %

$$C = 4.3 \%$$

Ergebnis

$$\gamma = (4,3-3) / (4,3-2,1) = 0.591 \longrightarrow 59.1 \%$$

$$L = (3-2,1) / (4,3-2,1) = 0,409 \longrightarrow 40,9 \%$$

Folie: 37

8. Aufgabe

2. Schritt: Ermittlung der Anteil von sekundär Zementit, der sich auf 727 + DT °C aus der 59,1% Austenit mit 2,1% Kohlenstoffhalt scheidet sich aus:

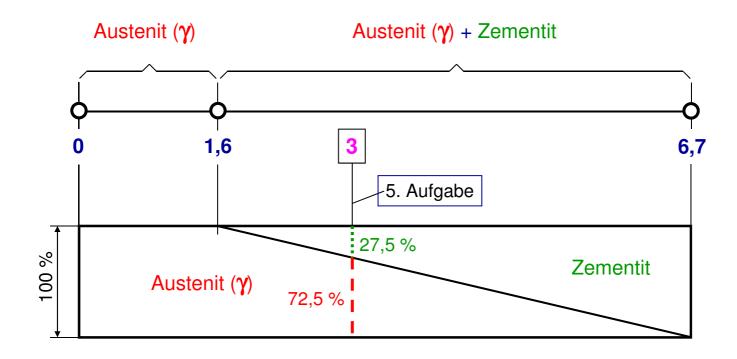
Austenit (
$$\gamma$$
) $C = 0.8 \%$ sek. Zem. (Z_{II}) $C = 6.7 \%$

$$\gamma = (6.7 - 2.1) / (6.7 - 0.8) * 0.591 = 0.461 \longrightarrow 46.1 %$$

$$Z_{||} = (2,1-0,8) / (6,7-0,8) * 0,591 = 0,130 \longrightarrow 13,0 \%$$

$$P = \gamma$$
 \longrightarrow $P + Z_{||} + L = 46.1 + 13.0 + 40.9 = 100 %$

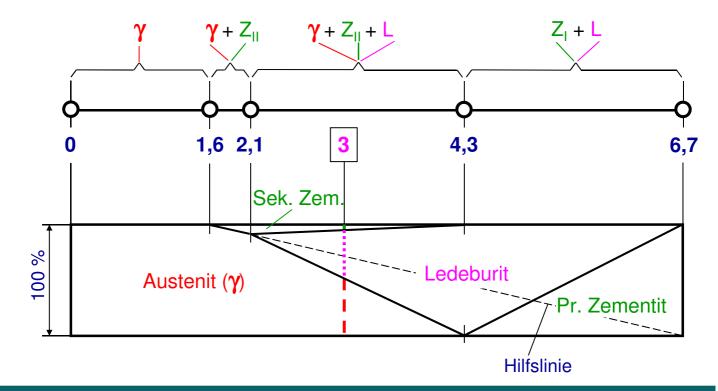
Zeichnen Sie für 1000°C das Phasenanteil-Diagramm auf!


Folie: 39

9. Aufgabe

Die Phasen auf 1000 °C:

Zeichnen Sie für 1000°C das Gefügebestandteil-diagramm auf!

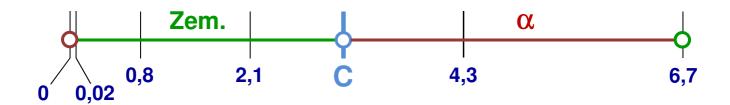

Folie: 41

10. Aufgabe

Die Gefügebestandteile auf 1000 °C:

Wie groß ist das Kohlenstoffgehalt der Legierung, wenn der Anteil der Phasen auf Raumtemperatur 55,2 % Ferrit + 44,8 % Zementit ist?

Folie: 43


11. Aufgabe

Die Konzentration der Phasen die auf 20°C im Gleichgewicht sind:

55,2 % Ferrit (
$$\alpha$$
) $C = \sim 0$ % 44.8 % Zementit $C = 6.7$ %

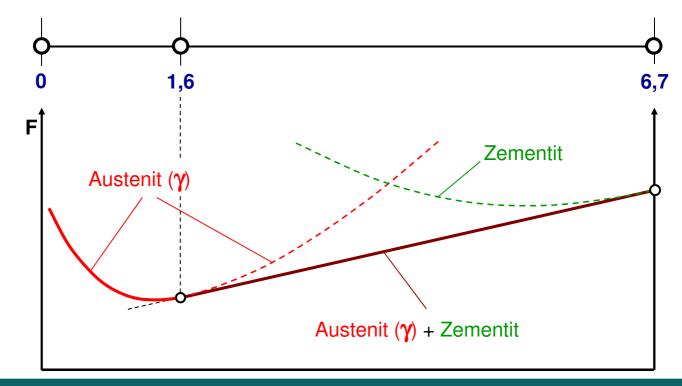
$$C = 6.7 \%$$

Laut Mischungsregel der Kohlenstoffgehalt ist:

$$C = 0.552 * 0 + 0.448 * 6.7 = 3.00 \%$$

Zeichnen Sie die Freie-Enthalpiekurven für die Fe-C System für 1000°C Temperatur auf!

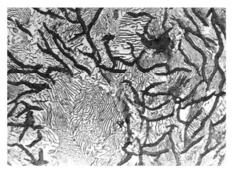
Folie: 45

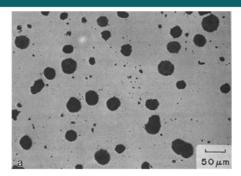


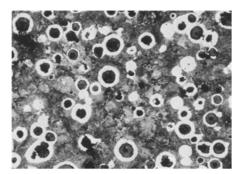
12. Aufgabe

Phasen auf 1000 $^{\circ}$ C: 0 - 1,6 % C Austenit (γ)

1,6-6,7 % C . . Austenit (γ) + Zementit

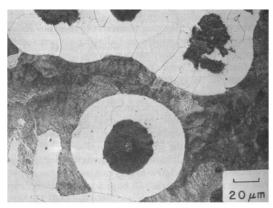



Mikroskopaufnahmen 4.

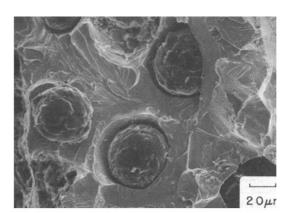

Graues Gusseisen mit Lamellengraphit, ungeätzt

Graues Gusseisen mit Lamellengraphit, geätzt G + P

Graues Gusseisen mit Kugelgraphit, ungeätzt


Graues Gusseisen mit Kugelgraphit, geätzt, G + F + P

Folie: 47



Mikroskopaufnahmen 5.

Graues Gusseisen mit Kugelgraphit mit höheren Vergrößerung, geätzt, G+F+P

Bruchfläche von Graues Gusseisen mit Kugelgraphit, Elektronenmikroskopaufnahme

Danke für die Aufmerksamkeit!